Studies of Finite Molecular Chains: Synthesis, Structural, Magnetic and Inelastic Neutron Scattering Studies of Hexa- and Heptanuclear Chromium Horseshoes

Abstract: We report the synthesis and structural characterisation of a family of finite molecular chains, specifically \([\{\text{R}_{n}\text{NH}_{2}\}\text{Cr}_{6}\text{F}_{11}\text{O}_{2}\text{CCM}_{n}\}_{2}]\) (in which \(R=n\text{Pr}\ 1, \text{Et} 2, \text{nBu} 3), [\{\text{Et}_{2}\text{NH}\}\text{Cr}_{6}\text{F}_{11}\text{O}_{2}\text{CCM}_{n}\}_{2}]\) (4), \([\{\text{Me}_{2}\text{NH}_{2}\}\text{Cr}_{6}\text{F}_{11}\text{O}_{2}\text{CCM}_{n}\}_{2}]\) (5) and \([\{\text{Pr}_{2}\text{NH}_{2}\}\text{Cr}_{6}\text{F}_{11}\text{O}_{2}\text{CCM}_{n}\}_{2}]\) (6). The structures all contain horseshoes of chromium centres, with each Cr···Cr contact within the horseshoe bridged by a fluoride and two pivalates. The horseshoes are linked through hydrogen bonds to the secondary ammonium cations in the structure, leading to di- and tetra-horseshoe structures. Through magnetic measurements and inelastic neutron scattering studies we have determined the exchange coupling constants in 1 and 6. In 1 it is possible to distinguish two exchange interactions, \(J_{A} = -1.1\text{ meV}\) and \(J_{B} = -1.4\text{ meV}\). The single-ion anisotropy parameters for CrIII were also derived for the two compounds as:

For 1, \(D_{C} = -0.028\text{ meV}\) and \(|E_{C}| = 0.005\text{ meV}\); for 6, \(D_{C} = -0.031\text{ meV}\). Magnetic-field-dependent inelastic neutron scattering experiments on 1 allowed the Zeeman splitting of the first two excited states and level crossings to be observed. For the tetramer of horseshoes (5), quantum Monte Carlo calculations were used to fit the magnetic susceptibility behaviour, giving two exchange interactions within the horseshoe (−1.32 and −1.65 meV) and a weak inter-horseshoe coupling of +0.12 meV. Multi-frequency variable-temperature EPR studies on 1, 2 and 6 have also been performed, allowing further characterisation of the spin Hamiltonian parameters of these chains.

Keywords: chain complexes · chromium · EPR spectroscopy · magnetic measurements · neutron scattering

[a] Dr. F. Tuna, M. Rancan, R. S. G. Davies, Dr. C. A. Muryn, Dr. G. A. Timco, Prof. R. E. P. Winpenny School of Chemistry, The University of Manchester Oxford Road, Manchester M13 9PL (UK) Fax: (+44) 161-275-4616 E-mail: richard.winpenny@man.ac.uk

[b] Dr. S. T. Ochsenbein, Dr. O. Waldmann, Dr. R. Bircher, Dr. A. Sieber, Dr. G. Carver, Prof. Dr. H. U. Güdel Department of Chemistry and Biochemistry University of Bern, Freiestrasse 3, 3000 Bern 9 (Switzerland) Fax: (+41) 31-631-43-99 E-mail: hans-ulrich.guedel@iac.unibe.ch

[c] Dr. H. Mutka Institut Laue-Langevin, 6 Rue Jules Horowitz BP 156-38042, Grenoble Cedex 9 (France)

[d] Dr. F. Fernandez-Alonso ISIS Facility, CCLRC Rutherford Appleton Laboratory Chilton, Didcot OX11 0QX (UK)

[e] Dr. A. Podlesnyak Laboratory for Neutron Scattering ETH Zürich and PSI Villigen, 5232 Villigen PSI (Switzerland)

[f] Dr. L. P. Engelhardt Department of Physics and Astronomy Francis Marion University, Florence, South Carolina (USA)
Introduction

Two classes of molecules have been heavily studied in the field of spin clusters in recent years. Most work has been done on “single-molecule magnets” (SMMs), which are high-spin molecules that retain magnetisation in the absence of a magnetic field due to anisotropy of the spin ground state. Secondly there has been much work on antiferromagnetically coupled (AFM) wheels. AFM wheels are aesthetically pleasing and allow detailed investigation of quantum phenomena. It has also been proposed that heterometallic AFM wheels that possess an S = 1/2 ground state could be used in quantum information processing.

Much rarer than the AFM wheels are finite AFM chains. There are an interesting family of such chains involving Ni and Co centres bridged by oligo-α-dipyridylamines; in these chains the magnetic exchange is normally very strong. Another family of finite chains can be made by adapting the synthetic procedure that generates the heterometallic AFM wheels. Here we discuss studies of hexaa- and heptanuclear finite molecular chains.

Our detailed investigation of the magnetism in these chains, by magnetisation measurements, inelastic neutron scattering (INS) and electron paramagnetic resonance spectroscopy (EPR), was motivated by the large interest in understanding the physical nature of the magnetic ground states and excitations in molecular spin clusters. In most clusters the Heisenberg interactions between the metal centres are the dominant terms, raising the general question of the possible magnetic phenomena due to Heisenberg interactions, which is evidently very fundamental. The answers, however, would also be relevant to chemistry, as they may suggest strategies for synthesising new topologies of potential interest or even compounds with desired magnetic properties.

The AFM wheels have become prototypical systems in this regard, and allow an important general insight into the problem of which ground states and spin excitations may emerge from Heisenberg interactions. In particular, they suggest what may be called the “L&E-band picture” which appears to be generic for a rather large class of Heisenberg spin clusters. In this picture, the low-lying energy spectrum consists of several rotational bands, those energies increase according to the Landé pattern and the next higher ones, collectively called the E-band, may be pictured as (discrete) AFM spin waves. Studying AFM chains in this context, and comparing them to AFM wheels, is highly desirable, as it will be interesting to see the characteristic effects due to the change of the boundary conditions from periodic (wheels) to open (chains). The physical nature of the excitations and spin structure in the hexanuclear chain was discussed recently.

We here present a brief review of the L&E-band concept with a discussion of the finite chains in particular, including a chemical analogy for the excitations observed in the hexa-

nuclear chain, which may help chemists to better understand some key aspects of the magnetic excitations in Heisenberg spin clusters.

Results and Analysis

Synthesis and structural studies: The horses (1–6) are all made by the same procedure, which is the reaction of hydrated chromium fluoride with pivalic acid in the presence of a secondary amine. In the absence of this amine the parent molecule, the homometallic [[CrF(O2CCMe3)3]]n wheel (7) forms. This compound is also a by-product of the reactions that produce the horses if a small amount of a secondary amine is used in reaction, or if heating is to a higher temperature or for a longer period of time. Our belief is that it is hydrogen bonding between the fluoride ions and the protonated amines that slows the formation of 7; the protonated amines stabilise the finite chains, which can then be crystallised by careful choice of conditions. We have examined a range of secondary amines to see if different chains can be stabilised in different reaction conditions.

With di-n-propyl- and di-n-butylamine the only horses we have crystallised are [[nPr2NH][CrF(O2CCMe3)3]] (1) and [[nBu2NH][CrF(O2CCMe3)3]] (3). The structure of 1 is shown in Figure 1. The individual [Cr6] cages have the shape of a horseshoe, with each Cr–Cr edge bridged by a fluoride and two pivalates. The CrIII ions at the tips of the horses (Cr1 and Cr6) each have four fluorides (of which three terminal) and two carboxylates coordinated, while the other CrIII ions each have two fluorides and four carboxylates coordinated. The structure is clearly related to 7, and to the heterometallic rings, missing two metal centres to complete a wheel.

In 1 and 3 the horses are arranged in pairs related by inversion symmetry in the crystal structure. A secondary ammonium cation is within each horse, in an analogous position to the templating ammonium ions in the heterometallic wheels. These ammonium cations form hydrogen...
bonds to terminal fluorides. In both structures four further secondary ammonium cations are located between the tips of the horseshoes and also form hydrogen bonds to terminal fluorides. Therefore, a pseudo-macrocycle containing twelve CrIII ions is formed.

For shorter secondary amines a more varied picture is found. When Et\textsubscript{2}NH is used an analogous structure to 1 and 3 can be formed in the same conditions. \[\text{[Et}_2\text{NH}_3\text{][Cr}_7\text{F}_{12}\text{(O}_2\text{CCMe}_3\text{)}_{10}\text{]}_3\] (2) has an identical arrangement of horseshoes and ammonium cations as in 1. However when half as many mole equivalents of Et\textsubscript{2}NH is used a mixture of compounds is formed. The major product is 2, which was extracted in Et\textsubscript{2}O with some trace of \[\text{[Cr}_7\text{F}_{12}\text{(O}_2\text{CCMe}_3\text{)}_{10}\text{]}\text{2.5H}_2\text{O}\] (detected by E1 MS and TLC). A small amount of a further product remains (\(\approx 100 \text{ mg}\)) which is less soluble in Et\textsubscript{2}O. This product was extracted with THF, filtered and the THF removed by evaporation prior to crystallisation from pentane/acetone. A very small amount of two different shaped crystals were obtained. These were identified by X-ray crystallography as \[\text{[Et}_2\text{NH}_3\text{][Et}_2\text{NH}_2\text{][Cr}_7\text{F}_{12}\text{(O}_2\text{CCMe}_3\text{)}_{12}\text{][HO}_2\text{CCMe}_3\text{]}_2\text{]}\text{2.5H}_2\text{O}\] (4) and \[\text{[Et}_2\text{NH}_3\text{][Cr}_7\text{F}_{12}\text{(O}_2\text{CCMe}_3\text{)}_{12}\text{]}\text{2.5H}_2\text{O}\] (4a). The structure of 4a is of insufficient quality to report; however, it appears to contain a similar structure to 4 but with terminal fluorides replaced by pivalate ligands.

The structure of 4 (Figure 2) contains a dimer of horseshoes, but contains \{Cr\textsubscript{4}\} horseshoes rather than hexanuclear [Cr\textsubscript{6}\] horseshoes are analogous to those found in 1–3, and each has a [Me\textsubscript{2}NH\textsubscript{4}]+ ion within each horseshoe. However the horseshoes pack with hydrogen bonds to eight further Me\textsubscript{2}NH\textsubscript{4}+ ions with [Cr\textsubscript{4}] horseshoes arranged in a cross (Figure 3).

If iPr\textsubscript{2}NH is used as the secondary amine a fourth structural type is found. \[\text{[iPr}_2\text{NH}_2\text{][Cr}_7\text{F}_{12}\text{(O}_2\text{CCMe}_3\text{)}_{12}\text{]}\text{2.5H}_2\text{O}\] (6) contains [Cr\textsubscript{4}] horseshoes similar to that in 4, but with hydrogen bonding between the horseshoes similar to that found in the structures of 1–3 (Figure 4), that is, there is an ammonium cation at the centre of each horseshoe, and four further iPr\textsubscript{2}NH\textsubscript{2} cations hydrogen bonding between the [Cr\textsubscript{4}] chains. All the fourteen Cr centres lie in the same plane.

Magnetic measurements of 1, 2, 5 and 6: Physical studies have been pursued on four representative examples: three dimers of horseshoes, 1, 2 and 6, and also the tetramer of horseshoes, 5.

The magnetic susceptibility (\(\chi\)) versus temperature of 1 is shown in Figure 5. It exhibits two maxima at about 4 and 16 K, indicative of AFM interactions. Observation of two maxima is unusual; such a feature has been reported previously for the AFM wheel [Cr\textsubscript{4}Ni]10 and in [Cr\textsubscript{8}Cu\textsubscript{4}] rings.11

Figure 2. The structure of 4 in the crystal.

![Figure 2. The structure of 4 in the crystal.](image-url)

Figure 3. The structure of the “cross of horseshoes” of 5 in the crystal.
The magnetic behaviour of 1 and 2 can be described by the spin Hamiltonian given in Equation (1) in which J_A represents the Heisenberg exchange between Cr1 and Cr2, and between Cr5 and Cr6, that is, the couplings at the tips of the horseshoe; J_B is the exchange coupling between the remaining CrIII ions; $D_{C\tau}$ is the axial and $E_{C\tau}$ the rhombic zero-field splitting (ZFS) parameter of the CrIII ions.

$$\mathcal{H} = -J_A(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_4 \cdot \mathbf{S}_5) - J_B(\mathbf{S}_3 \cdot \mathbf{S}_4 + \mathbf{S}_6 \cdot \mathbf{S}_5) + D_{C\tau} \sum_{\tau = 1}^{6} S_{\tau \tau} + E_{C\tau} \sum_{\tau = 1}^{6} (S_{\tau \tau}^2 + S_{\tau z}^2)$$

(1)

The magnetic behaviour of 1 can be modelled well (Figure 5) with $g = 1.98$, $J_A = -1.16 \text{ meV}$, $J_B = -1.40 \text{ meV}$, while the best fit of data measured on 2 gives the parameters, $g = 1.98$, $J_A = -1.14 \text{ meV}$, $J_B = -1.48 \text{ meV}$ (1 meV = 8.066 cm$^{-1}$). The susceptibility data do not allow the ZFS parameters to be determined.

For 6, the χ value increases slightly from 0.04 emu mol$^{-1}$ at 300 K to a broad local maximum at around 30 K (Figure 5). Below 15 K a steep increase is observed to 1.01 emu mol$^{-1}$ at 1.8 K. The χT value decreases from 11.61 emu K mol$^{-1}$ at 300 K to a minimal value of 1.76 emu K mol$^{-1}$ at 4.0 K, before a slight increase to 1.83 emu K mol$^{-1}$ at 1.8 K occurs (Figure 5). The χT value of 11.61 emu K mol$^{-1}$ at 300 K is below the calculated value of 12.86 emu K mol$^{-1}$ for seven uncoupled CrIII ions with $S = 3/2$ and $g = 1.98$, indicating that the AFM interactions affect the susceptibility up to 300 K. The subsequent decrease of χT with decreasing temperature is a further sign of AFM interactions. The low-temperature χT value of 1.83 emu K mol$^{-1}$ is in good agreement with the calculated value of 1.84 emu K mol$^{-1}$ expected for a spin ground state of $S = 3/2$ and $g = 1.98$. The field dependence of the magnetisation measured at 1.8 K is depicted in Figure 6. It shows a typical saturation behaviour, and at 5 T a value of 2.88 N$_A$H$_0$ near saturation. This is in good agreement with an $S = 3/2$ ground state.

The magnetic susceptibility data can be modelled by using a similar spin Hamiltonian to that in Equation (1), again neglecting anisotropy, but with an additional Cr spin centre included. For 6 only a single Cr···Cr exchange interaction of -1.18 meV was required for a good fit of the susceptibility data. There is also no need to include magnetic interactions between the paramagnetic individual horseshoes to fit the susceptibility behaviour.

For 5, the χ values increase gradually across the entire temperature range, with a very sharp increase below 20 K (Figure 7). The χT value of 39.3 emu K mol$^{-1}$ at room temperature is a little below that calculated for 24 CrIII centres (44.1 emu K mol$^{-1}$ for $g = 1.98$) and decreases smoothly with decreasing temperature. This is sign of antiferromagnetic exchange between the metal centres. At the lowest temperta-
The temperature dependence of \(c \) for \(5 \) is markedly different to that observed for \(1 \), which contains the same \(\{\text{Cr}_6\} \) repeat unit. Specifically, the point at which \(c \) reaches a maximum for \(1 \) and then falls, \(c \) for \(5 \) is still rising at the lowest temperatures measured. This residual paramagnetism of \(5 \) at very low temperature can be explained in several ways. Such paramagnetism could be the result of a paramagnetic ground state for each horseshoe—which seems unlikely given the results for \(1 \). Alternatively the explanation could be the presence of low-lying paramagnetic excited states of the supramolecular tetramer, as we have found previously for heterometallic rings.\(^{[31,32]} \) A third explanation—and one very commonly adopted in the magnetochemistry literature—is to assume that this low-temperature rise in \(c \) is due to a paramagnetic impurity. This assumption—if unsupported by other evidence, for example, elemental analysis—allows a fit of data to be performed that may have no validity as it introduces an unjustified parameter, namely the percentage of paramagnetic impurity.

As all evidence is that \(5 \) is a pure compound, the variable-temperature behaviour of susceptibility has been modelled by using quantum Monte Carlo (QMC) techniques.\(^{[12,33]} \) The results are shown in Figure 7. The assumption was made that a weak interaction could exist between the horseshoes, presumably through hydrogen-bonding paths involving the bridging ammonium cations. The QMC treatment, which allows many possible sets of exchange parameters to be examined very quickly, leads to an excellent fit with parameters: \(g = 1.98, J_a = -1.32, J_b = -1.65 \) and \(J_c = 0.12 \) meV (in which \(J_a \) and \(J_b \) have the same meaning as in the discussion above, and \(J_c \) is the coupling between horseshoes). The low-temperature rise in \(\chi \) can be modelled to 5 K, but below this temperature frustration effects make application of QMC difficult; the calculations do not converge. However the fit over the temperature range from 300–5 K, and the clear indication of a rise in \(\chi \) at low temperature suggests the model is good. The exchange parameters are in broad agreement with those calculated for \(1 \) and \(2 \), and with those used to fit INS data of \(1 \) (see below).

Zero-field inelastic neutron scattering (INS) of 1: INS spectra of \(1 \) at 1.6, 9.5 and 20 K were obtained on an IN5 instrument with an initial neutron wavelength of \(\lambda_i = 3.8 \) Å (Figure 8a). The high sloping background is ascribed to a non-magnetic origin due to the hydrogen content of the sample, while the sharper peaks are assigned to magnetic excitations. We applied the so-called Bose correction to subtract the background due to hydrogen atoms. The 20 K data were divided by the Bose population factor for phonons\(^{[34]} \) at 20 K and then multiplied with the population factor for 9.5 or 1.6 K. The resulting Bose corrected intensity was then subtracted from the 9.5 and 1.6 K data. In this way the spectra in Figure 8b were obtained, which confirms that the sloping background in the raw data was due to phonons.

Five peaks are observed, labelled I–V, on the neutron energy loss side, and two (I’ and II’) on the gain side. From

Figure 7. The molar magnetic susceptibility of \(5 \) plotted as \(\chi T \) against \(T \) (top) and \(\chi \) against \(T \) (bottom). The solid line is a curve calculated using quantum Monte Carlo procedures and the parameters given in the text.

Figure 8. a) INS spectra of \(1 \) obtained on IN5 (ILL) with an incoming neutron wavelength \(\lambda_i = 3.8 \) Å at 1.6, 9.5 and 20 K. Summed over all scattering angles. b) INS spectra of \(1 \) after Bose correction. The inset shows part of a spectrum obtained with \(\lambda_i = 3.0 \) Å at 1.7 K. The black solid lines are calculated spectra, with \(J_a = -1.1 \) meV, \(J_b = -1.4 \) meV, \(D = -0.028 \) meV, and \(|E| = 0.005 \) meV.
the temperature dependence it becomes clear that peak I at 0.32(1) meV and peak V at 2.55(1) meV are transitions from the ground state (cold transitions), while peaks II, III and IV at 0.93(2), 1.89(1), and 2.21(2) meV, respectively, are hot transitions. Peaks I’ and II’ on the energy gain side are the equivalents of transitions I and II on the loss side, and lie at −0.32(1) and −0.91(1) meV, respectively. The inset of Figure 8a shows a spectrum obtained with a wavelength of $\lambda_s = 3.0 \, \text{Å}$ at 1.7 K. Peak V is observed at 2.6(1) meV, and a new peak VI at 4.4(1) meV. These data are not Bose corrected, as we have only measured at low temperature with $\lambda_s = 3.0 \, \text{Å}$.

The neutron energy loss side of the INS spectra of I at 1.5 and 10 K obtained on IRIS with final neutron wavelength $\lambda_f = 6.66 \, \text{Å}$ are depicted in Figure 9. The broad extension of

![Figure 9](image_url)

Figure 9. INS spectra of I obtained on IRIS with final wavelength $\lambda_f = 6.66 \, \text{Å}$. The dashed line accounts for thermal diffuse scattering, and the solid lines are calculated spectra with $J_a = 1.1$ meV, $J_b = 1.4$ meV, $D = -0.028$ meV, and $|E| = 0.005$ meV.

The elastic line is due to thermal diffuse scattering. The spectra are characterised by a double peak at around 0.3 meV (Ia: 0.281(1) meV; Ib: 0.357(1) meV), which loses intensity with increasing temperature (=cold transitions), and by a broad peak at 0.919(3) meV (II) with more intensity at 10 K than at 1.5 K (=hot transition).

The INS data can be reproduced with only one exchange coupling constant, $J_a = J_b = 1.27$ meV[30] A significantly better fit, however, is obtained using two different exchange coupling constants that account for the different coordination environment that the CrIII ions at the tips of the horsehoe have compared to the other CrIII ions. This is also required to fit the magnetic susceptibility data adequately (see above).

Numerically diagonalising Equation (1) yields the energy eigenvalues E_n and the corresponding wavefunctions $|n\rangle$. These can be used to calculate the INS intensity for a transition $i \rightarrow f$, which is proportional to the scattering function $S^{\text{el}}(Q, \omega)$ given in Equation (2),[31] in which $j f$ is the number of the CrIII centre; α and β stand for Cartesian coordinates x, y, z; \hat{S}_z is the α component of the spin operator \hat{S} at position r_{i}; $|i\rangle$ is the initial state of a transition with energy E_i; $|f\rangle$ the final state with energy E_f; p_f is the Boltzmann population factor of state $|f\rangle$ and Q is the scattering vector or the momentum transfer between neutron and sample, respectively.

$$S^{\text{el}}(Q, \omega) = \sum_{i\neq f} \exp(iQ(r_f-r_i)) \times$$

$$\sum_{i\neq f} p_i (\hat{S}_\alpha | i \rangle \langle f | \hat{S}_\beta | f \rangle) \delta(E_f - E_i + h\omega)$$

(2)

For powder samples, Equation (2) has to be averaged in Q space using known formulae.[36,37] The Q dependence of the INS intensity given by so-called interference factors of a certain transition bears information about the wavefunctions of the involved states.[36,38] Unfortunately, due to the incoherent scattering from the hydrogen atoms in our sample, the Q dependence could not be evaluated. Therefore, we summed the spectra over all scattering angles, and hence over the whole Q range. We calculated the INS intensities accordingly, assuming Gaussian line shapes with a full-width-half-maximum (FWHM) of 0.4 meV for the INS spectrum with $\lambda_s = 3.0 \, \text{Å}$, 0.2 meV for the INS spectra with $\lambda_s = 3.8 \, \text{Å}$, and 0.03 meV for the IRIS spectra. We employed sparse matrix techniques with a homemade program to calculate the lowest states in energy,[25,37] because the calculation of all energies, wave functions and transition matrix elements as required for obtaining the INS intensity would be time-consuming with our present computing power (Hilbert space: 4096).

Excellent agreement between measured and calculated INS energies and intensities was obtained with the parameters $J_a = -1.1$ meV, $J_b = -1.4$ meV, $D_{C1} = 0.028$ meV, and $|E_{C2}| = 0.005$ meV, shown as solid lines in Figures 8 and 9. The negative coupling constants give an $S = 0$ ground state; the excited states have $S \neq 0$, and the anisotropy parameters mean these states will undergo zero-field splitting, that is, not all M_S states within a specific S state will be degenerate. Because of the lower resolution, the ZFS is not observed in the INS data. The value of D_{C1} is unambiguously determined by the energy difference of peaks Ia and Ib in the high-resolution IRIS data; and E_{C2} by the intensities and a broadened linewidth of peak Ib.

Peaks I and V are transitions from the $S = 0$ ground state to excited $S = 1$ states. Peak V consists of two transitions, but the energies of the two $S = 1$ states at approximately 2.5 meV are degenerate in our model. Peak VI contains three unresolved transitions from the ground state into $S = 1$ states. Peak II corresponds to a transition from the lowest $S = 1$ state to the lowest $S = 2$ state, and peak III from this $S = 2$ state to the lowest $S = 3$ state. Transition IV is a transition between the second $S = 1$ state and a higher excited $S = 2$ state.

The lowest states of the calculated energy spectrum and the observed transitions are shown in Figure 10. As the anisotropy is smaller than the exchange interaction (strong-exchange limit), it is still possible to represent the wavefunctions in (S, M_S) notation, indicating the dominant contribution. The axial ZFS terms split the $S = 1$ state into $|1, 0\rangle$ and $|1, \pm 1\rangle$, while the rhombic terms lead to a mixing of the
wavefunctions of states differing by $\Delta M_S = \pm 2$. Hence it admixes $|1, +1\rangle$ and $|1, -1\rangle$, which leads to the splitting into [2] and [3] shown in Figure 10, and hence to the observed broadening of peak Ib in Figure 9. We cannot determine the sign of E_{Cr} from this data.

The anisotropy splitting of the $S=2$ state is much smaller, and cannot be determined by INS; however it is resolved by EPR spectroscopy (see below). In addition peak II appears to consist of several transitions, due to the ZFS of the initial $S=1$ and final $S=2$ state. This accounts for the breadth of this peak.

Zero-field inelastic neutron scattering (INS) of 6: Figure 11 shows the neutron energy loss side of the INS spectra for 6 measured on IRIS at 1.5 and 10 K. The solid line in Figure 11a is an analytical function comprising a Gaussian and a Lorentzian, which accounts for the thermal diffuse scattering background. Subtraction of this background yields the spectra shown in Figure 11b. At 1.5 K three well resolved peaks at 0.09 (I), 0.63 (II) and 0.72 meV (III) are observed. Peaks I–III lose intensity with increasing temperature (\approx cold transitions), while a broader peak at 1.13 meV (IV) appears (\approx hot transition). Furthermore, at the upper edge of the spectra some intensity is observed. It is also associated with a magnetic transition (V); it is slightly less intense at 10 K than at 1.5 K.

In order to model the INS spectra of 6, we used the Hamiltonian given in Equation (3), in which J is the isotropic exchange constant between the CrIII ions in the chain and D_{Cr} is the single-ion ZFS parameter.

\[\mathcal{H} = -J \sum_{i=1}^{6} \mathbf{S}_i \mathbf{S}_{i+1} + D_{Cr} \sum_{i=1}^{3} \mathbf{S}_z^2 \]

As for 1 and the homo- and heterometallic CrIII-containing wheels,\[39,41\] the AFM exchange coupling is expected to be the leading term. The resulting spin ground state is $S=3/2$, which is zero-field split into the two Kramer’s doublets $M_S = \pm 3/2$ and $M_S = \pm 1/2$. D_{Cr} is expected to be negative in analogy to 1, and the other CrIII-containing wheels.\[39,41\] The analysis and calculation of the INS intensity was done as for 1 (for 6 the Hilbert space is 16384), and we assumed Gaussian line shapes with a FWHM of 0.03 meV. The best agreement between calculated and observed spectra was obtained for $J = -1.18$ meV and $D_{Cr} = -0.031$ meV, shown as solid lines in Figure 11b. A part of the calculated energy spectrum is shown in Figure 12, with energy states labelled again in $|S,M_S\rangle$ notation. Vertical arrows indicate observed INS transitions with labels corresponding to the peak labels in Figure 10.
\(|S,M_s\rangle \) notation. The vertical arrows represent the observed allowed transitions. Peak I corresponds to the transition within the zero-field split \(S=3/2 \) ground state and directly determines the value of \(D_{\text{Cr}} \). Peaks II, III and V reflect transitions from the ground-state multiplet to the lowest lying \(S=1/2 \) and 5/2 multiplets. Peak IV consists of several transitions from the first excited \(S=1/2 \) state to close-lying higher \(S=1/2 \) and 3/2 states.

Inelastic neutron scattering (INS) of 1 in a magnetic field:

Figure 13 shows the INS spectra obtained on FOCUS with \(\lambda_e = 5.5 \) Å at approximately 40 mK after subtracting an analytical function to account for the background due to quasi-elastic diffuse scattering. At zero field a broad asymmetric peak (peak I) at about 0.34(1) meV is observed, which corresponds to peak I in the INS data (Figure 8), and consists of the peaks Ia and Ib observed in the IRIS experiments (Figure 9; the resolution of the FOCUS experiment is too low to resolve the ZFS). With increasing field peak I is split into three components, I(−1), I(0), and I(+1). Between 2.5 and 3 T peak I(+1) disappears, peak I(0) has slightly moved upwards in energy and a new peak I(−2) at 0.50(3) meV appears. This peak moves further down with increasing field and at 3.5 and 4 T is merged with peak I(0) into one broad peak. At 4.5 T the peak II(−2) becomes sharper again and is at lower energy, and another peak I(−1) at 0.19(4) meV appears. Peak I(−1) and peak II(−2) seem to cross between 5 and 6 T.

We fitted Gaussian curves to the observed peaks to get their positions with a single FWHM for all peaks at the same field. Figure 14 shows a plot of the observed transition energies versus magnetic field, with the zero-field energy position taken from the INS data. The black solid line represents an isotropic calculation of the Zeeman splitting with \(g = 1.96 \) of an \(S=1 \) and \(S=2 \) state set to the energies of 0.33 and 1.26 meV, respectively, obtained from the INS measurements. The calculations support the interpretation that we observe the Zeeman splitting of the lowest triplet and quintet state, and that in this field range the ground state changes from \(S=0 \) to \(S=1 \) at about 2.9 T.

EPR spectroscopy of 1, 2 and 6: Compounds 1, 2 and 6 give rich and temperature-dependent EPR spectra below 20 K. The spectra of 1 and 2 are very similar and therefore we only discuss our simulation of 2 in detail, with comparison with 1 drawn where appropriate. For 1 the simulation requires a range of \(D \) values to simulate all features, and therefore the story is clearer for 2.

For 2, at both Q- and W-band, resonances are seen which can be assigned to \(S=1 \) and \(S=2 \) excited states (Figures 15 and 16). At low field a peak increases in intensity as the temperature is lowered, and this is assigned as the \(\Delta M_S = \pm 2 \) transition of a spin triplet state. Most of the remaining...
sharp features are due to a spin quintet state. Simulation of these two states separately followed by addition gives a good fit of the spectra (Figure 17). The simulation parameters used were: for the \(S = 1 \) state, \(g_r = 1.995, g_y = 1.980, g_z = 1.970, D_{S=1} = -0.088 \text{ meV}, \lambda = 0.2 \) (\(E = -0.018 \text{ meV} \)), with a Gaussian linewidth (\(W \)) of 450 G; for the \(S = 2 \) state, \(g_r = 1.976, g_y = 1.972, D_{S=3} = 0.017 \text{ meV}, \lambda = -0.04 \) (\(E = -0.0007 \text{ meV} \)) and \(B_0^2 = 3.4 \times 10^{-5} \text{ meV} \), with \(W = 180 \text{ G} \). It was necessary to include the \(B_0^2 \) term to account for the intensity of the highest field feature due to the spin quintet.

For the lowest field feature, which is due to the \(S = 1 \) state, a broadened feature is seen. This implies a range of \(D \) values for the \(S = 1 \) state, and a simulation could be achieved by including two \(S = 1 \) states (in a ratio of 3:1), with slightly different ZFS parameters. The major component has the parameters: \(g_r = 1.977, D_{S=1} = 0.078 \text{ meV}, E_{S=1} = -0.027 \text{ meV}, W = 300 \text{ G} \); while the minor component has \(g_r = g_y = g_z = 1.969, D_{S=1} = 0.084 \text{ meV}, E_{S=1} = -0.026 \text{ meV}, W = 500 \text{ G} \). The simulation also required for the \(S = 2 \) state, \(g_r = g_y = 1.958, g_z = 1.977, D_{S=2} = 0.017 \text{ meV}, E_{S=2} = 0, B_0^2 = 4.0 \times 10^{-5} \text{ meV}, W = 180 \text{ G} \).

Compared with the INS studies of the double horseshoe, it is clear that the ZFS for each spin state can be resolved by EPR spectroscopy, whereas by INS only bands involving the spin triplet show features due to ZFS. The \(D \) values input to the EPR spectra are for the individual spin states rather than the single-ion ZFS terms used for INS. To compare with the INS spectra, \(D_{S_{3/2}} \) is half the energy gap between transitions Ia and Ib in Figure 10, which is measured by INS as 0.076 meV (see above). The value determined by EPR spectroscopy is therefore higher than that determined by INS.

For 6 the EPR spectra are less well resolved (Figure 18). This is probably due to line-broadening due to dipolar exchange between the \(S = 3/2 \) horseshoes in the dimeric structure. A sharp peak is seen for an \(S = 1/2 \) excited state, with \(g \) values of \(g_r = 1.970 \) and \(g_z = 1.916 \). The resonances due to the \(S = 3/2 \) ground state are broad, and can be simulated with: \(g_r = 1.94, g_y = 1.89, g_z = 1.96, D_{S_{3/2}} = -0.042 \text{ meV}, E = 0.010 \text{ meV} \). To compare with the INS data, \(D_{S_{3/2}} \) is half the energy gap between transitions II and III in Figure 10 and 11, that is, 0.09 meV. Here the agreement is better than for 2.

Discussion

Correlation of structure and magnetic behaviour: The structures of the \([\text{Cr}_x]\) and \([\text{Cr}_7]\) horseshoes can be described as fragments of the homometallic wheel \([\text{CrF}_{17}C_{10}H_{12}]_8\) (7) missing two or one \(\text{Cr}^{III} \) centres, respectively.\(^{[14]}\) There is very little change in the metric parameters between the horseshoes and the wheels, for example, \(\text{Cr}^{III} - \text{Cr} \) distances are all very similar at about 3.4 Å. There is a very subtle change in the average of the \(\text{Cr}^{III} - \text{Cr} \) angles, with this being 135° in 7 and 135.4° in 6, but slightly smaller at near 133° in 1–5. \(\text{Cr}^{III} - \text{Cr} \) bridging angles and \(\text{Cr}^{III} - \text{F} \) distances are also very similar for all seven compounds (Table 1). It is normally assumed that there is a correlation between structural...
parameters associated with the predominant superexchange path and magnetic exchange; if this is the case here the exchange interaction in the chains and rings should also be similar. This is not what we find. It is possible that there could be a correlation with other structural parameters, but given the complexity of the structures such any correlation is likely to be coincidental.

The INS spectra of 7 could be modelled with a single exchange coupling constant $J = -1.46$ meV.[41] Similar values for the Cr--Cr interaction have also been found for the heterometallic wheels with general formula $[R_2NH_2]_3CrMF_8\left(O_2CCMe_3\right)_3$ with $M = Ni^{II}$ ($J = -1.46$ meV), Mn^{II} ($J = -1.43$ meV) and Zn^{II} ($J = -1.43$ meV).[42] For 1 we found that the internal coupling constant, $J_0 = -1.4$ meV; both the exchange path and the coordination geometries of the CrIII sites are identical to those in 7, and hence the exchange interaction is very similar. However, the coupling at the ends of the horseshoe (J_0) is 20% smaller than J_0. Qualitatively, we could infer that the three terminal fluoride ions attached to each CrIII ion at the tips of the horseshoe withdraw electron density from the CrIII sites, and hence weaken these interactions. Curiously the INS spectra and magnetic data for 6 are best fitted with a single exchange parameter of $J = -1.18$ meV, that is, similar to J_0, rather than J_0. The single-ion ZFS parameters for 1, $D = -0.028$ meV and $|E| = 0.005$ meV, and 6, $D = -0.031$ meV, are in good agreement with the parameters found for 7 ($D = -0.029$ meV and $|E| = 0.004$ meV).[41] This agreement is perhaps coincidental; in 7 all CrIII sites are chemically equivalent, whereas in 1 and 6 the sites at the tips of the horseshoe have different coordination spheres to the CrIII sites within the horseshoe. Given that we have derived D from the splitting of one excited state in 1 and the ground state in 6 it is possible that we have not been able to resolve different single-ion D values.

Measurements of the equivalent parameters from fitting specific heat data,[43] in each case using only a single exchange parameter for all Cr--Cr interactions, give: for 1, $J_{ex} = 1.190$ meV, $D_{Cr} = -0.026$ meV; for 6, $J_{ex} = 1.172$ meV, $D_{Cr} = -0.026$ meV. These values are in good agreement with the INS values.

Variations between structures: While the arrangements of Cr and bridging atoms within the horseshoes is constant, and even very similar between $[Cr_6]$ and $[Cr_7]$ horseshoes, the arrangement of ammonium cations and hence the packing of horseshoes is very different within the six structures described here.

The first consideration is to examine why the change from $[Cr_6]$ to $[Cr_7]$ horseshoes when the secondary amine changes from having linear alkyl chains to branched. If we compare the four dimeric co-planar structures 1-3 and 6 there appears to be an interesting trend comparing where the nitrogen atom of the ammonium cation is relative to the Cr atoms of the horseshoe. This can be quantified if we set an edge to the horseshoe by imagining a line linking the outermost Cr centres, for example, Cr1 and Cr6 in Figure 1. For 2, in which the cation is Et$_2$NH$_2$, the N atom is 0.97 Å from the edge of the $[Cr_7]$ horseshoe. Moving to 1, in which we have nPr$_2$NH$_2$ as cation, this same parameter is 0.84 Å and in 3, with nBu$_2$NH$_2$ the distance is down to 0.74 Å. Therefore as the alkyl group gets bigger, the cation moves towards the edge of the horseshoe. For 6, in which there is a $[Cr_7]$ horseshoe, the cation is more contained within the anionic complex—averaging 1.28 Å from the “edge” defined by linking the outermost Cr centres. However, if we imagined the cation within a $[Cr_6]$ horseshoe, for example, by linking one tip chromium (Cr1) with one Cr adjacent to a tip (Cr6) the cation would be only 0.45 Å from the edge. The change from $[Cr_6]$ to $[Cr_7]$ therefore appears to be related to the need to encapsulate a single ammonium cation within the horseshoe’s cavity.

This analysis does not explain the formation of a $[Cr_7]$ horseshoe in 4 in which the cation is NEt$_3$. For 4 the N atom is 2.23 Å from the edge of the $[Cr_7]$ horseshoe, and

Table 1. Experimental data for X-ray diffraction studies of 1–6.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>3749.70</td>
<td>3617.42</td>
<td>4042.22</td>
<td>4044.58</td>
<td>6852.08</td>
<td>4255.15</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P_2_1/n</td>
<td>P_2_1/a</td>
<td>P_2_1/c</td>
<td>P_1</td>
<td>P_1</td>
<td>P_2/n</td>
</tr>
<tr>
<td>c [Å]</td>
<td>21.9008(11)</td>
<td>26.749(3)</td>
<td>42.9987(10)</td>
<td>68.5208(6)</td>
<td>92.360(3)</td>
<td>24054(3)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>84.139(4)</td>
<td>76.04(3)</td>
<td>76.04(3)</td>
</tr>
<tr>
<td>β [°]</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>84.139(4)</td>
<td>76.04(3)</td>
<td>76.04(3)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>111.545(5)</td>
<td>110.523(13)</td>
<td>93.429(3)</td>
<td>84.139(4)</td>
<td>76.04(3)</td>
<td>76.04(3)</td>
</tr>
<tr>
<td>V [Å3]</td>
<td>10.282(9)</td>
<td>9983(2)</td>
<td>11.5925(6)</td>
<td>6643.0(6)</td>
<td>92.360(3)</td>
<td>24054(3)</td>
</tr>
<tr>
<td>T [K]</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>μ [mm$^{-1}$]</td>
<td>0.685</td>
<td>0.707</td>
<td>0.614</td>
<td>0.625</td>
<td>0.631</td>
<td>0.683</td>
</tr>
<tr>
<td>unique data</td>
<td>10776</td>
<td>15931</td>
<td>12142</td>
<td>16130</td>
<td>21090</td>
<td>19021</td>
</tr>
<tr>
<td>data with</td>
<td>7245</td>
<td>7280</td>
<td>10.670</td>
<td>8747</td>
<td>12.547</td>
<td>10.288</td>
</tr>
<tr>
<td>$F_o > 4\sigma(F_o)$</td>
<td>0.09975, 0.2810</td>
<td>0.0692, 0.2107</td>
<td>0.1717, 0.3643</td>
<td>0.0829, 0.2525</td>
<td>0.0943, 0.2743</td>
<td>0.0986, 0.3243</td>
</tr>
</tbody>
</table>

[a] $R1$ based on observed data, $wR2$ on all unique data.
around 0.9 Å from the edge of a [Cr₆] fragment, that is, it is in the same position with relation to six Cr ions in 4 as the same cation is in the [Cr₆] horseshoe in 2.

The tetrameric structure 5 is found for the smallest amine used, and it seems likely that the structure could not form if longer alkyl-chains were present on the cation. However, this does not explain why the use of Me₂NH₂ leads to the tetrameric structure rather than the dimeric structure. It does not seem any more hydrogen bonds are formed in 5 compared with the other structures.

Taken together these results suggest that the [Cr₆] horseshoes could be used as hydrogen-bond acceptors to produce more complex arrays. This is an area worth exploring in the future.

Energy spectrum, rotational bands and spin excitations in AFM chains: The greatest understanding of the elementary excitations in molecular magnets comes from exact numerical diagonalisation studies. These have the drawback that they are limited to systems with a rather small number of spin centres, simply due to the computational power required to handle larger clusters. If insight into the physical nature of elementary excitations could be developed it may prove possible to develop theories which are more computationally inexpensive. In the following discussion we will assume that the Heisenberg term is dominant and we will ignore weaker effects, such as anisotropy, aiming to uncover generic features due to the Heisenberg interactions. The horseshoes studied in this work shall henceforth be described as “perfect” finite chains, with the Hamiltonian given in Equation (4).

\[H = -J \sum_{j=1}^{N-1} S_j S_{j+1} \] (4)

This is reasonable as the variation of the coupling constants and the ZFS terms are small perturbations (N is the number of centres in the chain).

One general insight into Heisenberg spin clusters has emerged in the recent years, which we will call the L&E-band concept. It leads to a characteristic rotational-band structure in the energy spectrum, if plotted as function of \(S \). The lowest energy level for every value of \(S \) falls into an approximately parabolic band, called the L-band [25–29] while the next-higher energy levels for every value of \(S \) form a number of further approximately parabolic bands, which together are called the E-band (see Figure 19 for example). [25-28]

Still higher energy levels then form a quasi-continuum of states. The L&E-band concept is further characterised by the selection rule that at low temperature almost all INS transitions with significant intensities should occur within the L- and E-bands, and should not involve the quasi-continuum. [25]

When this picture applies, the problem of determining magnetic properties is enormously simplified. First, the energies of the states within the L-band are proportional to \(S(S+1) \), and hence characterised by one value \(\Delta \), see Equation (5) in which the energy of the ground state was set to 0.

\[E(S) = (\Delta/2)S(S+1) \] (5)

The thermodynamic properties (magnetisation, magnetic torque, specific heat) at low temperatures are largely determined by the L-band, and knowing \(\Delta \) should be sufficient. Second, the energies of the states within the E-band are also proportional to \(S(S+1) \), but shifted to higher energies, by increments \(\epsilon(q) \) given by Equation (6), in which \(q \) is the number of the different branches in the E-band.

\[E(S,q) = (\Delta/2)S(S+1) + \epsilon(q) \] (6)

Furthermore, the above-mentioned selection rule applies, which guarantees that the INS spectrum at low temperature is governed by the L- and E-bands, that is, the few values \(\Delta \) and \(\epsilon(q) \). Obtaining reasonable estimates for \(\Delta \) turns out to be fairly easy; several approximates were suggested [5,25–28,43]

For \(\epsilon(q) \), the situation is much more involved; very recently spin-wave theory (SWT) was suggested [25,30,44]

The L&E-band structure is currently believed to emerge for systems with a “classical” spin structure [25–27,45,46] A system is “classical” if the Néel state (i.e., alternating “spin up”/“spin down”) reflects well the spin structure in the ground state (here we limit ourselves to bipartite systems, such as even-numbered wheels or chains; for other cases the situation is far from clear [46]). The L&E-band states are then well approximated by wavefunctions of the form \(S_A S_B S_M \), in which \(S_A \) and \(S_B \) are the total spins of the two oppositely oriented sublattices (for 1: \(S_A = 3 \times S \); for 6: \(S_A = 4 \times S \)), \(S_B = 3 \times S \). Physically, the excitations within this band can be regarded as a combined rotation of the total spins of each sublattice, a so-called rotation of the Néel vector. [11,15,26–27] States in which \(S_A \) or \(S_B \) is reduced by 1 from their respective maximum value are called the E-band [25]. Physically, these states may be associated with (discrete) spin waves [13,15,25,26].

The L&E-band concept seems to describe a larger class of Heisenberg spin clusters, and is generic in this sense. The
clusters, such as the AFM wheels,[5,10,15,25,43,47,48] the modified AFM wheels,[39,42,49] the \([3 \times 3]\) grids,[13,50,51] the \([\text{Mo}_{72}\text{Fe}_{30}]\) cage[52,53] and other clusters. Observing the E-band directly is possible only with INS, hence evidence is scarce; it is well documented for the AFM wheels,[15] and the \([\text{Mo}_{72}\text{Fe}_{30}]\) grid.[50] for \([\text{Mo}_{72}\text{Fe}_{30}]\) evidence is also strong.[52,53] In addition, the SMM \(\text{Mn}_{12}\) seems to be characterised by a classical spin structure.[54]

The linkage between L&E-band picture and “classical” spin structure suggests the use of SWTs, which are semi-classical theories.[26] However, by construction SWTs are not appropriate for small-spin clusters; they all start with the key assumption of a long-range-ordered ground state, which in small clusters is never obeyed. Efforts have been made to overcome this deficiency, leading to the so-called finite-size corrections V and VI in[54] into two sets each of two quasi-degenerate states, hence the wheel they are essentially degenerate and give rise to four different AFM spin-wave excitations are present, but in running waves. In both the hexanuclear wheel and chain, the spin waves in finite chains are best described as standing waves. Despite the large splitting, the first-order treatment is actually rather good; the first-order result for \(q=0\) running waves, that is, standing waves. Despite the large splitting, the first-order treatment is actually rather good; the first-order result for the splitting is only 17% too small. In a very similar way do the transitions I, II and III correspond to transitions within the L-band, while transitions V and VI are transitions from the L-band to the E-band (see Figures 9 and 14). Similarly for the transitions II/III and IV are L-band transitions (transition II/III is split into II and III due to ZFS), and transition V is a transition from the L-band to the E-band. Hence, our studies 1) extend the (short) list of systems in which spin waves (=E-band) have been observed experimentally, and 2) confirm the L&E-band picture also for AFM finite chains. The latter point is also demonstrated by the calculated energy spectra shown in Figure 14.

We have previously discussed the spin-wave excitations V and VI in \(1\) (see Figure 11),[30] and we could show that the spin waves in finite chains are best described as standing waves due to the open boundaries, compared to the periodic boundary conditions in wheels, in which the spin waves are running waves. In both the hexanuclear wheel and chain, four different AFM spin-wave excitations are present, but in the wheel they are essentially degenerate and give rise to only one INS transition, while in the chain they are split into two sets each of two quasi-degenerate states, hence giving rise to two transitions in the INS spectrum (transitions V and VI in \(1\)). The splitting of otherwise degenerate spin-wave states is a direct effect of the open-boundary conditions. This has a neat analogy in chemistry, which actually can be found in any chemistry textbook; it will be discussed next.

Analogy of Hückel molecular orbitals in benzene and hexatriene and spin waves in hexanuclear wheels and chains:

The analogy of the splitting of the spin-wave bands in \(1\) is observed also in the molecule 1,3,5-hexatriene, in comparison to benzene. Figure 20 shows the energy spectra of benzene and hexatriene, in the Hückel approximation. The case of benzene is described in any textbook. The Hückel method results in diagonalising a Hamiltonian matrix of the form displayed in Figure 20, with matrix elements \(\alpha\) and \(\beta\). In accord with the cyclic symmetry, the states have the symmetry labels \(a_{2\alpha}\), \(e_{1\alpha}\), and \(b_{2\alpha}\), and in symmetry group \(D_{6v}\), or \(q=0\), \(\pm 1/3\pi\), \(\pm 2/3\pi\), \(\pi\) in symmetry group \(C_{3v}\), respectively (\(q\) is sort of a wave vector, which for \(q \neq 0\) represents left and right running waves of electronic charge density). Going to hexatriene, the one missing bond breaks the cyclic symmetry, giving rise to open boundaries and a reduction of the symmetry to \(C_{2v}\), and symmetry labels \(a_{1}\) and \(b_{1}\). The resultant Hamiltonian matrix is shown in Figure 20 (in textbooks often the similar case of butadiene is discussed). The main effect of the reduced symmetry is of course to split the otherwise degenerate states, that is, the \(c_{1}\) and \(c_{2}\) states. The new states may be obtained by treating the missing bond in first-order perturbation theory, which yields that the \(c_{2}\) states split into \(2/3\pi) \pm \gamma |\pi\rangle\) and \(e_{1\alpha}\) states into \(1/3\pi) \pm |\pi\rangle\). These are the linear and antilinear combinations of left (\(q<0\)) and right (\(q>0\)) running waves, that is, standing waves. Despite the large splitting, the first-order treatment is actually rather good; the first-order result for the splitting is only 17% too small. In a very similar way do the otherwise degenerate spin-wave excitations split in AFM chains.[30]

The analogy between the Hückel molecular orbitals and the spin waves in Heisenberg clusters would be perfect for a spin cluster with ferromagnetic exchange interactions. For AFM spin clusters the situation is subtler because of reasons too involved to be outlined here, hence resulting in a somewhat different energy spectrum (for AFM wheels, the four states with \(q = \pm 1/3\pi\), \(\pm 2/3\pi\) are essentially degenerate).
The reagents were from Aldrich and used as received. Complexes were mono-, di- or trimeric assemblies of horseshoes in the crystallisation of these chains appears to be dependent on the chromium chains can be made straightforwardly. The crystallisation of pentane/acetone (2:1) by slow evaporation of the solvents at room temperature, which is also the sample used for INS studies.

Experimental Section

The reagents were from Aldrich and used as received. Complexes were mono-, di- or trimeric assemblies of horseshoes in the crystallisation of these chains appears to be dependent on the chromium chains can be made straightforwardly. The crystallisation of pentane/acetone (2:1) by slow evaporation of the solvents at room temperature, which is also the sample used for INS studies.

Conclusion

The solvents were from Aldrich and used as received. Complexes were mono-, di- or trimeric assemblies of horseshoes in the crystallisation of these chains appears to be dependent on the chromium chains can be made straightforwardly. The crystallisation of pentane/acetone (2:1) by slow evaporation of the solvents at room temperature, which is also the sample used for INS studies.

Materials and Methods

1. **Preparation of the Compounds**

 - **[Cr6F11(O2CCMe3)10]2** (3): In a dry Schlenk flask, CrF3·4H2O (5.0 g, 28 mmol) and n-butyllamine (2.0 g, 22 mmol) were dissolved in THF (75 mL). After cooling to room temperature, diethyl ether (75 mL) was added, and the solution was stirred for 5 h. Then it was filtered and the filtrate diluted with MeCN (70 mL) and stirred for 3 d. The precipitate that formed during this time was collected by filtration, washed with a large amount of MeCN and then extracted into Et2O (20 mL). The extract was diluted with MeCN (30 mL) and stirred for 30 min. The green solid that precipitated was collected by filtration, washed with a large amount of MeCN and with acetone (10 mL), and dried in air. Yield 0.32 g (20.0%); elemental analysis calculated (%) for C156H316Cr14F24N6O50 : Cr 17.09, C 43.98, H 7.48, N 1.97; found: Cr 16.83, C 43.88, H 7.48, N 1.97, F 10.70; Cr 17.15, C 43.99, H 7.71, N 2.13. X-ray quality single crystals could be obtained by crystallisation from pentane/acetone, Et2O/acetone or toluene/CH2Cl2. Here we report the structure of the crystals from pentane/acetone, which is also the sample used for INS studies. Elemental analysis calculated (%) for C148H300Cr12F22N6O40 : Cr 16.22, C 46.22, H 7.86, N 2.19; found: Cr 16.04, C 45.88, H 8.10, N 2.07.

2. **X-ray studies**

 - Data were collected on Bruker SMART CCD diffractometer (MoKα, λ=0.71073 Å except 2 for which λ=0.6982 Å was used). In all cases the selected crystals were mounted on the tip of a glass pin using Paratone-N oil and placed in the cold flow produced with an Oxford Cryocooling device.

3. **Data Reduction**

 - Complete hemispheres of data were collected using o-scans (0.3°, 30 seconds/frame). Integrated intensities were obtained with SAINT-Plus and they were corrected for absorption using SADABS.

4. **Structure solution and refinement**

 - The structures were solved by direct methods and completed by iterative cycles of ΔF syntheses and full-matrix least-squares refinement against F2.

5. **Magnetic measurements**

 - Magnetic measurements were performed in the temperature range 1.8-300 K, by using a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T magnet. The diamagnetic corrections for the compounds were estimated using Pascal’s constants, and magnetic data were corrected for diamagnetic contributions of the sample holder.

6. **Inelastic neutron scattering (INS) measurements**

 - The following instruments were used for the INS experiments: the direct geometry time-of-flight (TOF) spectrometer INS at the Institut Laue-Langevin (ILL), Grenoble (France), the inverted geometry TOF spectrometer IRIS at the ISIS facility, CCLRC Rutherford Appleton Laboratory, Didcot (UK), and the direct TOF spectrometer FOCUS at the Paul Scherrer Institut (PSI), Villigen (Switzerland).

For the INS experiment on IN5, approximately 4 g of non-deuterated polycrystalline sample were filled into an aluminum cylinder with outer diameter 14 mm and height 55 mm in a helium atmosphere. Measurements were performed with an initial neutron wavelength of λ = 3.0 Å at 1.7 K and 3.8 Å at 1.6, 9.5 and 20 K. The elastic resolution (full-width-half-maximum (FWHM)) was 0.4 and 0.17 meV, respectively. The experimental temperatures were achieved with a 3He-Orange ILL cryostat. For
the TOF to energy conversion and the data reduction the ILL program INX was used.

For the IRIS experiment approximately 2 g of non-deuterated polycrystal-
line sample were sealed under helium in a hollow aluminium cylinder
with 24 mm outer diameter, 1 mm sample space, and 50 mm height. The final neutron wavelength of \(\lambda_1 = 6.6 \AA \) was selected with the (002) reflection
of a pyrolytic graphite analyser, yielding a resolution at the elastic
line of 17.5 meV. A He-Orange cryostat was employed to reach the experi-
mental temperatures of 1.5 and 10 K. A spectrum of vanadium metal
was used to correct for detector efficiency and spurious instrumental
peaks.

The FOCUS experiment was performed on approximately 4 g of non-
deuterated polycrystalline sample, sealed under helium in a copper cylin-
der of 14 mm outer diameter and 50 mm height. The initial neutron
wavelength was \(\lambda_1 = 5.5 \AA \). An Oxford Instruments Kelvinx He/He di-
lution insert was used inside a 9 T Oxford Instruments cryomagnet. A
finite chain compounds

Acknowledgements

This work was funded by the EPSRC (UK), the Swiss National Science
Foundation (NFP 47), The Leverhulme Trust and the European Union
(TMIR Quemolna MRTN-CT-2003-504880 and NE MAGMANet 515767-
). We thank Prof. Hogi Weihe for use of the program EPR-SIM.

4. Bircher, G. Chaboussant, C. Dobe, H. U. Güdel, S. T. Ochsen-
220.
7. V. L. Pecoraro, A. J. Stemmler, B. R. Gibney, J. J. Bodwin, H. Wang,
Commun. 2007, 1789–1797.
10. J. van Slageren, R. Sensoli, D. Gatteschi, A. A. Smith, M. Hellwell,
R. E. P. Winpenny, A. Cornia, A.-L. Barra, A. G. M. Jansen, E.
11. R. H. Laye, M. Murrie, S. Ochsenbein, A. R. Bell, S. J. Teat, J. Raf-
6220.
12. D. M. Low, G. Rajamaran, M. Hellwell, G. A. Timco, J. van Slage-
ren, R. Sensoli, S. Ochsenbein, R. Bircher, C. Dobe, O. Waldmann,
H. U. Güdel, M. A. Adams, E. Ruiz, S. Alvarez, E. J. L. McInnes,
15. O. Waldmann, T. Guidi, S. Carretta, C. Mondelli, A. L. Dearden,

Received: February 5, 2008
Published online: May 9, 2008